Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(16): 23363-23392, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443532

ABSTRACT

Globally, more than 2 billion tonnes of municipal solid waste (MSW) are generated each year, with that amount anticipated to reach around 3.5 billion tonnes by 2050. On a worldwide scale, food and green waste contribute the major proportion of MSW, which accounts for 44% of global waste, followed by recycling waste (38%), which includes plastic, glass, cardboard, and paper, and 18% of other materials. Population growth, urbanization, and industrial expansion are the principal drivers of the ever-increasing production of MSW across the world. Among the different practices employed for the management of waste, landfill disposal has been the most popular and easiest method across the world. Waste management practices differ significantly depending on the income level. In high-income nations, only 2% of waste is dumped, whereas in low-income nations, approximately 93% of waste is burned or dumped. However, the unscientific disposal of waste in landfills causes the generation of gases, heat, and leachate and results in a variety of ecotoxicological problems, including global warming, water pollution, fire hazards, and health effects that are hazardous to both the environment and public health. Therefore, sustainable management of MSW and landfill leachate is critical, necessitating the use of more advanced techniques to lessen waste production and maximize recycling to assure environmental sustainability. The present review provides an updated overview of the global perspective of municipal waste generation, composition, landfill heat and leachate formation, and ecotoxicological effects, and also discusses integrated-waste management approaches for the sustainable management of municipal waste and landfill leachate.


Subject(s)
Refuse Disposal , Waste Management , Water Pollutants, Chemical , Solid Waste/analysis , Refuse Disposal/methods , Water Pollutants, Chemical/analysis , Waste Management/methods , Waste Disposal Facilities
2.
PeerJ ; 11: e15266, 2023.
Article in English | MEDLINE | ID: mdl-37304860

ABSTRACT

Current study was conducted to evaluate the effect of important land uses and soil depth on soil organic carbon pools viz. total organic carbon, Walkley and black carbon, labile organic carbon, particulate organic carbon, microbial biomass carbon and carbon management index (CMI) in the north Western Himalayas, India. Soil samples from five different land uses viz. forest, pasture, apple, saffron and paddy-oilseed were collected up to a depth of 1 m (0-30, 30-60, 60-90 cm). The results revealed that regardless of soil depth, all the carbon pools differed significantly (p < 0.05) among studied land use systems with maximum values observed under forest soils and lowest under paddy-oilseed soils. Further, upon evaluating the impact of soil depth, a significant (p < 0.05) decline and variation in all the carbon pools was observed with maximum values recorded in surface (0-30 cm) soils and least in sub-surface (60-90 cm) layers. CMI was higher in forest soils and lowest in paddy-oilseed. From regression analysis, a positive significant association (high R-squared values) between CMI and soil organic carbon pools was also observed at all three depths. Therefore, land use changes and soil depth had a significant impact on soil organic carbon pools and eventually on CMI, which is used as deterioration indicator or soil carbon rehabilitation that influences the universal goal of sustainability in the long run.


Subject(s)
Carbon , Soil , Biomass
3.
Molecules ; 26(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641302

ABSTRACT

Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively.


Subject(s)
Mesorhizobium/growth & development , Plant Growth Regulators/metabolism , Potassium/chemistry , Sequence Analysis, DNA/methods , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Mesorhizobium/classification , Mesorhizobium/isolation & purification , Mesorhizobium/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Secondary Metabolism , Soil Microbiology , Solubility , Temperature
4.
Chem Biol Drug Des ; 98(3): 363-376, 2021 09.
Article in English | MEDLINE | ID: mdl-33966346

ABSTRACT

Histone deacetylase 2 (HDAC2), an isozyme of Class I HDACs has potent imputations in actuating neurodegenerative signaling. Currently, there are sizeable therapeutic disquiets with the use of synthetic histone deacetylase inhibitors in disease management. This strongly suggests the unfulfilled medical necessity of plant substitutes for therapeutic intervention. Sulforaphane-N-acetyl-cysteine (SFN-N-acetylcysteine or SFN-NAC), a sulforaphane metabolite has shown significantly worthier activity against HDACs under in vitro conditions. However, the atomistic studies of SFN-NAC against HDAC2 are currently lacking. Thus, the present study employed a hybrid strategy including extra-precision (XP) grid-based flexible molecular docking, molecular mechanics generalized born surface area (MM-GBSA), e-Pharmacophores method, and molecular dynamics simulation for exploring the binding strengh, mode of interaction, e-Pharmacophoric features, and stability of SFN-NAC towards HDAC2. Further, the globally acknowledged density functional theory (DFT) study was performed on SFN-NAC and entinostat individually in complex state with HDAC2. Apart from this, these inhibitors were tested against three distinct cancer cell models and one transformed cell line for cytotoxic activity. Moreover, double mutant of HDAC2 was generated and the binding orientation and interaction of SFN-NAC was scrutinized in this state. On the whole, this study unbosomed and explained the comparatively higher binding affinity of entinostat for HDAC2 and its wide spectrum cytotoxicity than SFN-NAC.


Subject(s)
Acetylcysteine/chemistry , Antineoplastic Agents/chemistry , Histone Deacetylase 2/antagonists & inhibitors , Isothiocyanates/chemistry , Sulfoxides/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Density Functional Theory , Drug Stability , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydrogen Bonding , Molecular Docking Simulation , Mutagenesis , Pyridines/pharmacology , Thermodynamics
5.
Phytother Res ; 35(7): 3509-3532, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33580629

ABSTRACT

Various signaling mechanisms contribute significantly to the development of multiple cancers. Small molecules with the potential of influencing a wide variety of molecular targets may prove as broad-spectrum anticancer agents. Flavonoids from plant sources are strongly emerging as promising antineoplastic molecules because of their ability to hamper different cancer-driving signaling pathways. Further, these flavonoids offer an additional benefit due to their congenital antioxidant potential. This paper discusses the anticancer activity of luteolin against a number of cancers including leukemias, prostate cancer, pancreatic cancer, breast cancer, lung cancer, colorectal cancer, melanoma, liver, gastric, and brain cancer. Strong emphasis has been laid on key molecular mechanisms impacted by luteolin for exerting antineoplastic effect. Importantly, certain epigenetic targets like histone deacetylases (HDACs), DNA methylation regulator enzymes that are influenced by this befitting flavone for inducing cytotoxicity in certain preclinical cancer models, have also been made the part of this review. Additionally, the significantly improved therapeutic benefits of luteolin in combination with other therapeutics are comprehensively discussed. The current loopholes in luteolin research are also considered, which may open novel routes for further valuable studies on this promising flavone.


Subject(s)
Antineoplastic Agents, Phytogenic , Luteolin , Neoplasms , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Humans , Luteolin/pharmacology , Luteolin/therapeutic use , Neoplasms/drug therapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Signal Transduction/drug effects
6.
Phytother Res ; 35(2): 823-834, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32930436

ABSTRACT

Aberrations in epigenetic mechanisms provide a fertile platform for tumour initiation and progression. Thus, agents capable of modulating the epigenetic environment of neoplasms will be a valuable addition to the anticancer therapeutics. Flavones are emerging as befitting anticancer agents due to their inherent antioxidant activity and the ability to restrain epi-targets namely histone deacetylases (HDACs). HDACs have broader implications in pathogenesis of various cancers. Chrysin, a flavone possessing the ability to inhibit HDACs could prove as a potential anticancer drug. Thus, in this article we focussed on Chrysin and its distinct antineoplastic effect against bellicose malignancies including lung, colorectal, cervical, gastric, melanoma, hepatocellular carcinoma and breast cancer. The underlying signalling cascades triggered by Chrysin for inducing cytotoxic effect in these cancer models are discussed. Importantly, approaches towards combinatorial treatments by Chrysin and commercial anticancer agents are taken into account. The downstream molecular mechanism aroused by combined therapy for abrogating onerous cancer chemoresistance is delineated as well. Moreover, the nano-combinatorial approach involving co-encapsulation of Chrysin with other herbal and non-herbal agents for clinical excellence is elucidated.


Subject(s)
Antineoplastic Agents/therapeutic use , Epigenesis, Genetic/drug effects , Flavones/chemistry , Flavonoids/chemistry , Histone Deacetylase Inhibitors/therapeutic use , Plants/chemistry , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...